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Worldwide Energy Consumption: Buildings
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• The buildings sector, which includes residential and commercial structures, 
accounts for almost 21% of the world’s delivered energy consumption in 2015. 
(International Energy Outlook 2017)

• About 20% of the energy could be avoided with efficiency improvements[1].
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• The buildings sector, which includes residential and commercial structures, 
accounts for almost 21% of the world’s delivered energy consumption in 2015. 
(International Energy Outlook 2017)

• About 20% of the energy could be avoided with efficiency improvements[1].

Constructing efficient buildings Retrofittin
g

High Cost
The return is unclear before installation.
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Improve Building Energy Efficiency
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• Behavioral and operational efficiency.
• Provide the more detailed energy feedback to customers.

Monthly bill Monthly bill
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Improve Building Energy Efficiency
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• Behavioral and operational efficiency.
• Provide the more detailed energy feedback to customers.
• Energy Breakdown: provide per-appliance energy readings.

Save up to 15% energy[2]

Total energy consumption
e.g., monthly bills

1.5 kWh

6.3 kWh

0.9 kWh

Total energy consumption Appliance energy consumption
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Related Work

• Direct Sensing System[3, 4]

• Instrument every appliance in each home.
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1.5 kWh

6.3 kWh

0.9 kWh

Total energy consumption

Expensive
Resource consuming
Poor Scalability

Plug load monitor
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Related Work
• Non-Intrusive Load Monitoring (NILM)
• One smart sensor for each home.
• Algorithms: Steady/transit state analysis[5], FHMM[6, 7], Neural Network[8, 9]
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Related Work
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• Collaborative Sensing[10, 11, 12]

• No additional hardware installation in test homes.
• Intuition:

• Common design and construction patterns for homes create a 
repeating structure in energy data.

Homes

Appliances

Months Home 
Factor 

Appliance
Factor

Season 
Factor

Scalable Energy Breakdown Across Regions[11]

Appliance-months 
Factor

Appliances-
Months

Homes

Home Factor

Scalable Energy Breakdown[10]
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• Collaborative Sensing[10, 11, 12]

• No additional hardware installation in test homes.
• Intuition:

• Common design and construction patterns for homes create a 
repeating structure in energy data.
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• Collaborative Sensing[10, 11, 12]

• No additional hardware installation in test homes.
• Intuition:

• Common design and construction patterns for homes create a 
repeating structure in energy data.

…

… …

Jan

…

Dec

Jan

…

10 20

Dec

… …

30 40

130

120

12020

…

110

K1 K2

Latent factor 
for months

…

1 …

2 …

…

K1

K2

2

3

Latent factor 
for homes

Jan

…

Dec

Jan

…

…
20$ 22$30$ 10$

Dec

200$ 250$ 210$

… … …

— 350$250$

… … …

25$ 35$ 15$

180$

350$

—

… … …

380$ 280$ 480$

25$

250$ 310$

…

…

mailto:CS@U.Va
mailto:CS@U.Va


CS@U.Va Active Collaborative Sensing for Energy Breakdown

Related Work
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Limitation of Collaborative sensing
• Assume the existence of relevant training data, i.e., appliance-level 

energy readings from some fully instrumented homes.

High cost of sub-meters instrumentation.
Few buildings in the world have instrumented with sub-meters.

…

4 3 22

? ?30$ 10$

90$ 85$ ? ?

10$ ? 18$ 20$
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Related Work
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Limitation of Collaborative sensing
• Assume the existence of relevant training data, i.e., appliance-level 

energy readings from some fully instrumented homes.
Few buildings in the world have instrumented with sub-meters.
High cost of sub-meters instrumentation.

Can we minimize the deployment cost by selectively deploying sensors to a 
subset of homes and appliances while maximizing the reconstruction 
accuracy of sub-metered readings in non-instrumented homes?

Active sensor deployment for energy breakdown
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Problem Statement
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Active Sensor Deployment for Energy Breakdown
• Define the energy readings as a three-way tensor.

M 
homes

N appliances

T time points CP decomposition
(rank decomposition)

R

M Home Factor (H)

Season Factor (S)

T
R

Appliance Factor (A)

N

R⨂

ℎ!

𝑎!
𝑠!

Active Tensor Completion
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Special Properties of Energy Breakdown
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Jan

Feb

Mar

Aggregate readings
(from monthly bills) 

•Time-series data
• Energy data will be updated in every 

sampling cycle.
M 

homes

N appliances

T
months

•Sensor Installation
• Once the sensor is installed, the readings 

will always be available thereafter.
• Dilemma: balance the choice of 

instrumentation that focuses on the 
current reconstruction accuracy, and the 
accuracy for future predictions.

•Combinatorial decision
• Select the <home, appliance> pairs.

selected
<home, appliance>
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𝑒!"#$%& = 𝑒!"#∗ +noise

Select the one will reduce the reconstruction 
uncertainty the most rapidly.

Active Selection
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Uncertainty based active selection. Where does the uncertainty come from?

The observed energy readings are noisy. •Hardware.
•Energy consumption in wire transition.
•Sub-meter readings.

For home i, appliance j, and month k

𝑒!"#∗ =< ℎ!∗, 𝑎"∗, 𝑠#∗ >

ground truth decomposition

𝑒!"#$%& ≈< ℎ
̂
! , 𝑎

̂
" , 𝑠

̂
# >

approximate decomposition

Uncertainty in 
parameter estimation

Uncertainty in 
energy 
estimation

||ℎ!∗ − ℎ!
̂
|| ≠ 0

||𝑎$∗ − 𝑎$
̂
|| ≠ 0

||𝑠"∗ − 𝑠"
̂
|| ≠ 0

||𝑒!"#∗ − 𝑒
̂
!"#|| ≠ 0

True energy reading

?

?
𝑒!"#∗ =< ℎ!∗, 𝑎"∗, 𝑠#∗ >

𝑒
̂
!"# =< ℎ

̂
! , 𝑎

̂
" , 𝑠

̂
# >
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Uncertainty Quantification

𝑒!"#$%& = 𝑒!"#∗ +noise𝑒!"#$%& = 𝑒!"#∗ + 𝜂!"# 𝜂!"# ∼ 𝑁(0, 𝛿()

• In the tensor factorization, the objective function is:  

𝐿 =
1
2
∑
#)*

+
∑
!,"
(𝑒!"#$%& −< ℎ! , 𝑎" , 𝑠# >)- +

𝜆*
2
∑
!)*

.
ℎ!/ℎ! +

𝜆-
2
∑
")*

0
𝑎"/𝑎" +

𝜆1
2
∑
#)*

+
𝑠#/𝑠#

• Parameter Estimation: Alternating Least Square (ALS)

𝐴%,' = ∑
()*

+
∑
,)*

'
(𝑎(,' ∘ 𝑠,,')(𝑎(,' ∘ 𝑠,,')- + 𝜆*𝐼*𝑏!,& = ∑

'()

*
∑
+()

&
𝑒!'+(𝑎',& ∘ 𝑠+,&)ℎ" = 𝐴",$%&𝑏",$Home factor

How to quantify the uncertainty in parameter estimation ?

Latent factor: h, a, s
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Uncertainty Quantification

It can be proved that, with probability at least 1 − 𝛿
How to quantify the uncertainty in parameter estimation?

||𝐡
̂
!
& − 𝐡!∗||𝐀!" ≤ 𝑟ln

𝜆)𝑟 + |Ω&|𝑄-𝑅-

𝜆) ⋅ 𝑟 ⋅ 𝛿
+ 𝜆)𝑃 +

2𝑃𝑄-𝑅-

𝜆)
(𝐺- + 𝐺.)

𝐺# =
𝑓#(1 − 𝑓#

|%!|)
1 − 𝑓#

𝑓# = 𝑞# + 𝜖#

(Lemma 1 in paper)
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Uncertainty Quantification

It can be proved that, with probability at least 1 − 𝛿
How to quantify the uncertainty in parameter estimation?

(Lemma 1 in paper)

||𝐡
̂
!
& − 𝐡!∗||𝐀!" ≤ 𝛼/!

& ||𝐚
̂
$
& − 𝐚$∗||𝐂&" ≤ 𝛼1&

& ||𝐬
̂
2
& − 𝐬2∗ ||𝐄'" ≤ 𝛼4'

&

How the uncertainty in parameter estimation contributes to the uncertainty 
in energy estimation?

|𝐞
̂
BCD − 𝐞BCD∗ | ≤ 𝛼F+

G ||𝐚
̂
C
G ∘ 𝐬

̂
D
G ||(𝐀+,)-. + 𝛼I/

G ||𝐡
̂
B
G ∘ 𝐬

̂
D
G ||(𝐂/,)-. + 𝑐𝑜𝑛𝑠𝑡

Upper bound of parameter estimation 
error

Uncertainty of home factor,  and appliance factor estimation.
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Uncertainty Quantification

It can be proved that, with probability at least 1 − 𝛿
How to quantify the uncertainty in parameter estimation?

(Lemma 1 in paper)

||𝐡
̂
!
& − 𝐡!∗||𝐀!" ≤ 𝛼/!

& ||𝐚
̂
$
& − 𝐚$∗||𝐂&" ≤ 𝛼1&

& ||𝐬
̂
2
& − 𝐬2∗ ||𝐄'" ≤ 𝛼4'

&

How the uncertainty in parameter estimation contributes to the uncertainty 
in energy estimation?

|𝐞
̂
BCD − 𝐞BCD∗ | ≤ 𝛼F+

G ||𝐚
̂
C
G ∘ 𝐬

̂
D
G ||(𝐀+,)-. + 𝛼I/

G ||𝐡
̂
B
G ∘ 𝐬

̂
D
G ||(𝐂/,)-. + 𝑐𝑜𝑛𝑠𝑡

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(ℎ𝑜𝑚𝑒- , 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒. , 𝑚𝑜𝑛𝑡ℎ/)
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Leverage Time Information
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Integrate temporal information to retrospect the history and foresee the future

(𝑥, 𝑦) = argmax'∈[*],,∈[-] ∑
./$%0

$10
𝜌.,$ ⋅ 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝑖, 𝑗, 𝑘)

Weight function to control the contribution

•Sensor Installation
•Dilemma: balance the choice of instrumentation that focuses on the current 

reconstruction accuracy, and the accuracy for future predictions.

Could we prepare for the future?
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Evaluation: Theoretical analysis
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𝐸!(𝑡)Prediction Error with data selected by our proposed method, ActSense,

Prediction Error with any other data, 𝐸"(𝑡)

It can be proved that, 

𝑈𝐵(𝐸2(𝑡)) ≤ 𝑈𝐵(𝐸3(𝑡))

Upper bound of the error
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Empirical Evaluation: Setup
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Datasets
• Dataport: the largest public residential home energy dataset.
•Austin, 2014 (53), 2015 (93), 2016 (73), 2017 (44). 
•Aggregate, HVAC, Fridge, Washing Machine, Dishwasher, Furnace, Microwave.

•Evaluation Metric
• Root Mean Square Error (RMSE) for appliance a.

• Mean RMSE for each model.

𝑅𝑀𝑆𝐸(𝑎) =
∑!∑2(𝑒!$2564 − 𝑒

̂
!$2)-

𝑀×𝑇

𝑀𝑒𝑎𝑛𝑅𝑀𝑆𝐸 =
∑!𝑅𝑀𝑆𝐸(𝑎)

𝑁
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Empirical Evaluation: Baselines
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•Random Selection
•Perform CP decomposition with ALS
•Select L <home, appliance> pairs uniformly random from the candidates.
•Query By Committee (QBC)[13, 14]:
•Perform CP decomposition with ALS.
•QBC quantifies the prediction uncertainty based on the level of disagreement 

among a committee of trained models.
•We perform CP decomposition with different rank to form the committee. 

Uncertainty is computed by the variance across the estimate of the committee 
members.

•Variational Bayesian - Variance (VBV)[15, 16]

•Perform CP decomposition with Variational Bayesian Inference.
•Select the pairs based on the variance of each estimation.
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Empirical Evaluation
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Quality of Energy Breakdown, Austin, 2015.

Mean RMSE performance across months Relative Improvement compared with random method

Select 5 pairs at each month. 
At the end of the year, 10.75% <home, appliance> pairs are instrumented.
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Empirical Evaluation
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Integrate temporal information
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Empirical Evaluation
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Budget size, Austin, 2015.
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Summary
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• Proposed an active collaborative sensing algorithm to actively deploy 
sensors for energy breakdown.
✦Utilize the uncertainty from the parameter estimation process to select 

the candidates.
✦Integrate the temporal information to retrospect the history and foresee 

the future.
• Provided rigorous theoretical analysis of the uncertainty reduction of the 

proposed algorithm.

• Future work
✦ Active selection with budget constraint.
✦ Active selection for transfer learning across regions.
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Thanks!

Q & A

GitHub: https://github.com/yilingjia/ActSense
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